728x90
반응형

데이터 셋 로딩과 데이터 클린징

RFM 기법

import pandas as pd
import datetime
import math
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

retail_df = pd.read_excel(io='Online Retail.xlsx')
retail_df.head(3)





	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom

 

retail_df.info()


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
InvoiceNo      541909 non-null object
StockCode      541909 non-null object
Description    540455 non-null object
Quantity       541909 non-null int64
InvoiceDate    541909 non-null datetime64[ns]
UnitPrice      541909 non-null float64
CustomerID     406829 non-null float64
Country        541909 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 33.1+ MB

 

반품이나 CustomerID가 Null인 데이터는 제외, 영국 이외 국가의 데이터는 제외

retail_df = retail_df[retail_df['Quantity'] > 0]
retail_df = retail_df[retail_df['UnitPrice'] > 0]
retail_df = retail_df[retail_df['CustomerID'].notnull()]
print(retail_df.shape)
retail_df.isnull().sum()


(397884, 8)
InvoiceNo      0
StockCode      0
Description    0
Quantity       0
InvoiceDate    0
UnitPrice      0
CustomerID     0
Country        0
dtype: int64

 

retail_df['Country'].value_counts()[:5]


United Kingdom    354321
Germany             9040
France              8341
EIRE                7236
Spain               2484
Name: Country, dtype: int64

 

retail_df = retail_df[retail_df['Country']=='United Kingdom']
print(retail_df.shape)


# (354321, 8)

 

RFM 기반 데이터 가공

구매금액 생성

retail_df['sale_amount'] = retail_df['Quantity'] * retail_df['UnitPrice']
retail_df['CustomerID'] = retail_df['CustomerID'].astype(int)

 

print(retail_df['CustomerID'].value_counts().head(5))
print(retail_df.groupby('CustomerID')['sale_amount'].sum().sort_values(ascending=False)[:5])



17841    7847
14096    5111
12748    4595
14606    2700
15311    2379
Name: CustomerID, dtype: int64
CustomerID
18102    259657.30
17450    194550.79
16446    168472.50
17511     91062.38
16029     81024.84
Name: sale_amount, dtype: float64

 

retail_df.groupby(['InvoiceNo','StockCode'])['InvoiceNo'].count().mean()


# 1.028702077315023

 

고객 기준으로 Recency, Frequency, Monetary가공

# DataFrame의 groupby() 의 multiple 연산을 위해 agg() 이용
# Recency는 InvoiceDate 컬럼의 max() 에서 데이터 가공
# Frequency는 InvoiceNo 컬럼의 count() , Monetary value는 sale_amount 컬럼의 sum()
aggregations = {
    'InvoiceDate': 'max',
    'InvoiceNo': 'count',
    'sale_amount':'sum'
}
cust_df = retail_df.groupby('CustomerID').agg(aggregations)
# groupby된 결과 컬럼값을 Recency, Frequency, Monetary로 변경
cust_df = cust_df.rename(columns = {'InvoiceDate':'Recency',
                                    'InvoiceNo':'Frequency',
                                    'sale_amount':'Monetary'
                                   }
                        )
cust_df = cust_df.reset_index()
cust_df.head(3)




	CustomerID	Recency	Frequency	Monetary
0	12346	2011-01-18 10:01:00	1	77183.60
1	12747	2011-12-07 14:34:00	103	4196.01
2	12748	2011-12-09 12:20:00	4595	33719.73

 

Recency를 날짜에서 정수형으로 가공

cust_df['Recency'].max()


# Timestamp('2011-12-09 12:49:00')

 

import datetime as dt

cust_df['Recency'] = dt.datetime(2011,12,10) - cust_df['Recency']
cust_df['Recency'] = cust_df['Recency'].apply(lambda x: x.days+1)
print('cust_df 로우와 컬럼 건수는 ',cust_df.shape)
cust_df.head(3)




cust_df 로우와 컬럼 건수는  (3920, 4)
CustomerID	Recency	Frequency	Monetary
0	12346	326	1	77183.60
1	12747	3	103	4196.01
2	12748	1	4595	33719.73

 

RFM 기반 고객 세그먼테이션

Recency, Frequency, Monetary 값의 분포도 확인

fig, (ax1,ax2,ax3) = plt.subplots(figsize=(12,4), nrows=1, ncols=3)
ax1.set_title('Recency Histogram')
ax1.hist(cust_df['Recency'])

ax2.set_title('Frequency Histogram')
ax2.hist(cust_df['Frequency'])

ax3.set_title('Monetary Histogram')
ax3.hist(cust_df['Monetary'])


(array([3.887e+03, 1.900e+01, 9.000e+00, 2.000e+00, 0.000e+00, 0.000e+00,
        1.000e+00, 1.000e+00, 0.000e+00, 1.000e+00]),
 array([3.75000000e+00, 2.59691050e+04, 5.19344600e+04, 7.78998150e+04,
        1.03865170e+05, 1.29830525e+05, 1.55795880e+05, 1.81761235e+05,
        2.07726590e+05, 2.33691945e+05, 2.59657300e+05]),
 <a list of 10 Patch objects>)

 

cust_df[['Recency','Frequency','Monetary']].describe()


	Recency	Frequency	Monetary
count	3920.000000	3920.000000	3920.000000
mean	92.742092	90.388010	1864.385601
std	99.533485	217.808385	7482.817477
min	1.000000	1.000000	3.750000
25%	18.000000	17.000000	300.280000
50%	51.000000	41.000000	652.280000
75%	143.000000	99.250000	1576.585000
max	374.000000	7847.000000	259657.300000

 

K-Means로 군집화 후에 실루엣 계수 평가

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, silhouette_samples

X_features = cust_df[['Recency','Frequency','Monetary']].values
X_features_scaled = StandardScaler().fit_transform(X_features)

kmeans = KMeans(n_clusters=3, random_state=0)
labels = kmeans.fit_predict(X_features_scaled)
cust_df['cluster_label'] = labels

print('실루엣 스코어는 : {0:.3f}'.format(silhouette_score(X_features_scaled,labels)))




# 실루엣 스코어는 : 0.592

 

K-Means 군집화 후에 실루엣 계수 및 군집을 시각화

### 여러개의 클러스터링 갯수를 List로 입력 받아 각각의 실루엣 계수를 면적으로 시각화한 함수 작성  
def visualize_silhouette(cluster_lists, X_features): 
    
    from sklearn.datasets import make_blobs
    from sklearn.cluster import KMeans
    from sklearn.metrics import silhouette_samples, silhouette_score

    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    import math
    
    # 입력값으로 클러스터링 갯수들을 리스트로 받아서, 각 갯수별로 클러스터링을 적용하고 실루엣 개수를 구함
    n_cols = len(cluster_lists)
    
    # plt.subplots()으로 리스트에 기재된 클러스터링 만큼의 sub figures를 가지는 axs 생성 
    fig, axs = plt.subplots(figsize=(4*n_cols, 4), nrows=1, ncols=n_cols)
    
    # 리스트에 기재된 클러스터링 갯수들을 차례로 iteration 수행하면서 실루엣 개수 시각화
    for ind, n_cluster in enumerate(cluster_lists):
        
        # KMeans 클러스터링 수행하고, 실루엣 스코어와 개별 데이터의 실루엣 값 계산. 
        clusterer = KMeans(n_clusters = n_cluster, max_iter=500, random_state=0)
        cluster_labels = clusterer.fit_predict(X_features)
        
        sil_avg = silhouette_score(X_features, cluster_labels)
        sil_values = silhouette_samples(X_features, cluster_labels)
        
        y_lower = 10
        axs[ind].set_title('Number of Cluster : '+ str(n_cluster)+'\n' \
                          'Silhouette Score :' + str(round(sil_avg,3)) )
        axs[ind].set_xlabel("The silhouette coefficient values")
        axs[ind].set_ylabel("Cluster label")
        axs[ind].set_xlim([-0.1, 1])
        axs[ind].set_ylim([0, len(X_features) + (n_cluster + 1) * 10])
        axs[ind].set_yticks([])  # Clear the yaxis labels / ticks
        axs[ind].set_xticks([0, 0.2, 0.4, 0.6, 0.8, 1])
        
        # 클러스터링 갯수별로 fill_betweenx( )형태의 막대 그래프 표현. 
        for i in range(n_cluster):
            ith_cluster_sil_values = sil_values[cluster_labels==i]
            ith_cluster_sil_values.sort()
            
            size_cluster_i = ith_cluster_sil_values.shape[0]
            y_upper = y_lower + size_cluster_i
            
            color = cm.nipy_spectral(float(i) / n_cluster)
            axs[ind].fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_sil_values, \
                                facecolor=color, edgecolor=color, alpha=0.7)
            axs[ind].text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
            y_lower = y_upper + 10
            
        axs[ind].axvline(x=sil_avg, color="red", linestyle="--")

 

### 여러개의 클러스터링 갯수를 List로 입력 받아 각각의 클러스터링 결과를 시각화 
def visualize_kmeans_plot_multi(cluster_lists, X_features):
    
    from sklearn.cluster import KMeans
    from sklearn.decomposition import PCA
    import pandas as pd
    import numpy as np
    
    # plt.subplots()으로 리스트에 기재된 클러스터링 만큼의 sub figures를 가지는 axs 생성 
    n_cols = len(cluster_lists)
    fig, axs = plt.subplots(figsize=(4*n_cols, 4), nrows=1, ncols=n_cols)
    
    # 입력 데이터의 FEATURE가 여러개일 경우 2차원 데이터 시각화가 어려우므로 PCA 변환하여 2차원 시각화
    pca = PCA(n_components=2)
    pca_transformed = pca.fit_transform(X_features)
    dataframe = pd.DataFrame(pca_transformed, columns=['PCA1','PCA2'])
    
     # 리스트에 기재된 클러스터링 갯수들을 차례로 iteration 수행하면서 KMeans 클러스터링 수행하고 시각화
    for ind, n_cluster in enumerate(cluster_lists):
        
        # KMeans 클러스터링으로 클러스터링 결과를 dataframe에 저장. 
        clusterer = KMeans(n_clusters = n_cluster, max_iter=500, random_state=0)
        cluster_labels = clusterer.fit_predict(pca_transformed)
        dataframe['cluster']=cluster_labels
        
        unique_labels = np.unique(clusterer.labels_)
        markers=['o', 's', '^', 'x', '*']
       
        # 클러스터링 결과값 별로 scatter plot 으로 시각화
        for label in unique_labels:
            label_df = dataframe[dataframe['cluster']==label]
            if label == -1:
                cluster_legend = 'Noise'
            else :
                cluster_legend = 'Cluster '+str(label)           
            axs[ind].scatter(x=label_df['PCA1'], y=label_df['PCA2'], s=70,\
                        edgecolor='k', marker=markers[label], label=cluster_legend)

        axs[ind].set_title('Number of Cluster : '+ str(n_cluster))    
        axs[ind].legend(loc='upper right')
    
    plt.show()

 

visualize_silhouette([2,3,4,5],X_features_scaled)
visualize_kmeans_plot_multi([2,3,4,5],X_features_scaled)

 

로그 변환 후 재 시각화

### Log 변환을 통해 데이터 변환
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, silhouette_samples

# Recency, Frequecny, Monetary 컬럼에 np.log1p() 로 Log Transformation
cust_df['Recency_log'] = np.log1p(cust_df['Recency'])
cust_df['Frequency_log'] = np.log1p(cust_df['Frequency'])
cust_df['Monetary_log'] = np.log1p(cust_df['Monetary'])

# Log Transformation 데이터에 StandardScaler 적용
X_features = cust_df[['Recency_log','Frequency_log','Monetary_log']].values
X_features_scaled = StandardScaler().fit_transform(X_features)

kmeans = KMeans(n_clusters=3, random_state=0)
labels = kmeans.fit_predict(X_features_scaled)
cust_df['cluster_label'] = labels

print('실루엣 스코어는 : {0:.3f}'.format(silhouette_score(X_features_scaled,labels)))



# 실루엣 스코어는 : 0.305

 

visualize_silhouette([2,3,4,5],X_features_scaled)
visualize_kmeans_plot_multi([2,3,4,5],X_features_scaled)

 

반응형

'Data_Science > ML_Perfect_Guide' 카테고리의 다른 글

8-2. Bag of Words  (0) 2022.01.02
8-1.텍스트 전처리  (0) 2022.01.02
7-9. DBSCAN 2  (0) 2021.12.30
7-8. DBSCAN  (0) 2021.12.30
7-7. Gaussian_Mixture_Model  (0) 2021.12.30

+ Recent posts