728x90
반응형

Random Forest

결정 트리에서 사용한 사용자 행동 인지 데이터 세트 로딩 DT & Bagging(sampling) bootstrapping 분할방식, 여러 개 데이터 세트 중첩 분리 => 신뢰도 확보

수정 버전 01: 날짜 2019.10.27일

원본 데이터에 중복된 Feature 명으로 인하여 신규 버전의 Pandas에서 Duplicate name 에러를 발생.
중복 feature명에 대해서 원본 feature 명에 '_1(또는2)'를 추가로 부여하는 함수인 get_new_feature_name_df() 생성

import pandas as pd

def get_new_feature_name_df(old_feature_name_df):
    feature_dup_df = pd.DataFrame(data=old_feature_name_df.groupby('column_name').cumcount(), columns=['dup_cnt'])
    feature_dup_df = feature_dup_df.reset_index()
    new_feature_name_df = pd.merge(old_feature_name_df.reset_index(), feature_dup_df, how='outer')
    new_feature_name_df['column_name'] = new_feature_name_df[['column_name', 'dup_cnt']].apply(lambda x : x[0]+'_'+str(x[1]) 
                                                                                           if x[1] >0 else x[0] ,  axis=1)
    new_feature_name_df = new_feature_name_df.drop(['index'], axis=1)
    return new_feature_name_df

 

features.txt
0.02MB
import pandas as pd

def get_human_dataset( ):
    
    # 각 데이터 파일들은 공백으로 분리되어 있으므로 read_csv에서 공백 문자를 sep으로 할당.
    feature_name_df = pd.read_csv('./human_activity/features.txt',sep='\s+',
                        header=None,names=['column_index','column_name'])
    
    # 중복된 feature명을 새롭게 수정하는 get_new_feature_name_df()를 이용하여 새로운 feature명 DataFrame생성. 
    new_feature_name_df = get_new_feature_name_df(feature_name_df)
    
    # DataFrame에 피처명을 컬럼으로 부여하기 위해 리스트 객체로 다시 변환
    feature_name = new_feature_name_df.iloc[:, 1].values.tolist()
    
    # 학습 피처 데이터 셋과 테스트 피처 데이터을 DataFrame으로 로딩. 컬럼명은 feature_name 적용
    X_train = pd.read_csv('./human_activity/train/X_train.txt',sep='\s+', names=feature_name )
    X_test = pd.read_csv('./human_activity/test/X_test.txt',sep='\s+', names=feature_name)
    
    # 학습 레이블과 테스트 레이블 데이터을 DataFrame으로 로딩하고 컬럼명은 action으로 부여
    y_train = pd.read_csv('./human_activity/train/y_train.txt',sep='\s+',header=None,names=['action'])
    y_test = pd.read_csv('./human_activity/test/y_test.txt',sep='\s+',header=None,names=['action'])
    
    # 로드된 학습/테스트용 DataFrame을 모두 반환 
    return X_train, X_test, y_train, y_test


X_train, X_test, y_train, y_test = get_human_dataset()

 

학습/테스트 데이터로 분리하고 랜덤 포레스트로 학습/예측/평가

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import pandas as pd
import warnings
warnings.filterwarnings('ignore')

# 결정 트리에서 사용한 get_human_dataset( )을 이용해 학습/테스트용 DataFrame 반환
X_train, X_test, y_train, y_test = get_human_dataset()

# 랜덤 포레스트 학습 및 별도의 테스트 셋으로 예측 성능 평가
rf_clf = RandomForestClassifier(random_state=0)
rf_clf.fit(X_train , y_train)
pred = rf_clf.predict(X_test)
accuracy = accuracy_score(y_test , pred)
print('랜덤 포레스트 정확도: {0:.4f}'.format(accuracy))

# 랜덤 포레스트 정확도: 0.9253

 

GridSearchCV 로 교차검증 및 하이퍼 파라미터 튜닝

from sklearn.model_selection import GridSearchCV

params = {
    'n_estimators':[100],
    'max_depth' : [6, 8, 10, 12], 
    'min_samples_leaf' : [8, 12, 18 ],
    'min_samples_split' : [8, 16, 20]
}
# RandomForestClassifier 객체 생성 후 GridSearchCV 수행
rf_clf = RandomForestClassifier(random_state=0, n_jobs=-1) # 전체 cpu를 작동해라
grid_cv = GridSearchCV(rf_clf , param_grid=params , cv=2, n_jobs=-1 )
grid_cv.fit(X_train , y_train)

print('최적 하이퍼 파라미터:\n', grid_cv.best_params_)
print('최고 예측 정확도: {0:.4f}'.format(grid_cv.best_score_))

# 최적 하이퍼 파라미터:
#  {'max_depth': 10, 'min_samples_leaf': 8, 'min_samples_split': 8, 'n_estimators': 100}
# 최고 예측 정확도: 0.9180

 

튜닝된 하이퍼 파라미터로 재 학습 및 예측/평가 nes를 300으로

rf_clf1 = RandomForestClassifier(n_estimators=300, max_depth=10, min_samples_leaf=8, \
                                 min_samples_split=8, random_state=0)
rf_clf1.fit(X_train , y_train)
pred = rf_clf1.predict(X_test)
print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test , pred)))

# 예측 정확도: 0.9165

 

개별 feature들의 중요도 시각화

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

ftr_importances_values = rf_clf1.feature_importances_
ftr_importances = pd.Series(ftr_importances_values,index=X_train.columns  )
ftr_top20 = ftr_importances.sort_values(ascending=False)[:20]

plt.figure(figsize=(8,6))
plt.title('Feature importances Top 20')
sns.barplot(x=ftr_top20 , y = ftr_top20.index)
plt.show()

 

반응형

+ Recent posts