Segmentation
이미지에서 점 단위로 예측하는 기법
확인해야 할 포인트
1. 어떻게 한점 한점을 예측할지
2. 원본의 크기와 같아야 한다
- 입력된 이미지를 넣었을 때 원본과 같은 크기로 나와야 한다
종류
1. Semantic segmentation
- 이미지 내에 있는 물체들을 의미 있는 단위로 분할한다
- 이미지의 각 픽셀이 어느 클래스에 속하는지 예측한다
- 동일한 객체들끼리는 한 번에 Masking을 수행한다
- 대표적으로 FCN이 있다
2. Instance segmentation
- 동일한 객체들이여도 개별 Object로 간주하고 Masking을 수행한다
- 대표적으로 Mask R-CNN이 있다
FCN(Fully Convolutional Networks)
AlexNet의 구조에서 Dense layer 부분을 Convolution layer로 변형한 모델 (convolutionalization)
1. FC layer를 사용하면 이미지의 위치 정보가 사라진다
2. FC layer를 사용하면 입력 이미지의 크기가 고정된다
따라서 semantic segmenation을 하기 위해서 마지막 FC layer를 convolution layer로
변형 함으로써 위치 정보를 보존하고 이미지 크기로 부터 유연할 수 있다
Skip combining
이전의 정보를 더함으로써 복원할때 활용한다
이전의 layer는 현재의 layer가 가지는 정보보다 디테일한 정보를 가지고 있기 때문에 복원하는데 도움이 되기 때문이다
U-net
Instance segmentation 방법
U-net 구조
U-Net은 이미지의 전반적인 컨텍스트 정보를 얻기 위한 네트워크와 정확한 지역화(Localization)를 위한 네트워크가 대칭 형태로 구성되어 있다
Contracting path의 최종 feature map으로 부터 높은 해상도의 결과를 얻기 위해 upsampling을 진행한다
coarse map -> dense prediction
Overlap-Tile Input
이미지를 타일로 나누어서 입력으로 사용한다
파란 영역의 이미지를 입력하면 노란 영역의 segmentation 결과를 얻는다
다음 tile에 대한 segmentation을 얻기 위해서는 이전 입력의 일부분이 포함되어 있어야 한다
이미지의 경계 부분 픽셀에 대한 segmentation을 위해 0이나 임의의 패딩값을 사용하는 대신
이미지 경계 부분의 미러링을 이용한 Extrapolation 기법을 사용한다
U-net 구현하기
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True) # 37마리 애완동물 6000장 이미지
dataset['train'] # cpu, gpu 둘다 활용하여 효율적 연산 가능한 데이터 구조
# <PrefetchDataset shapes: {file_name: (), image: (None, None, 3), label: (), segmentation_mask: (None, None, 1), species: ()}, types: {file_name: tf.string, image: tf.uint8, label: tf.int64, segmentation_mask: tf.uint8, species: tf.int64}>
dataset['test']
# <PrefetchDataset shapes: {file_name: (), image: (None, None, 3), label: (), segmentation_mask: (None, None, 1), species: ()}, types: {file_name: tf.string, image: tf.uint8, label: tf.int64, segmentation_mask: tf.uint8, species: tf.int64}>
for i in dataset['train'].take(1):
image = i['image']
mask = i['segmentation_mask']
fig, ax = plt.subplots(1,2)
ax[0].imshow(image)
ax[1].imshow(mask, cmap='gray')
backbone = tf.keras.applications.MobileNetV2(input_shape=(128,128,3), include_top=False)
backbone.summary()
Model: "mobilenetv2_1.00_128"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 128, 128, 3) 0
__________________________________________________________________________________________________
Conv1 (Conv2D) (None, 64, 64, 32) 864 input_1[0][0]
__________________________________________________________________________________________________
bn_Conv1 (BatchNormalization) (None, 64, 64, 32) 128 Conv1[0][0]
__________________________________________________________________________________________________
Conv1_relu (ReLU) (None, 64, 64, 32) 0 bn_Conv1[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise (Depthw (None, 64, 64, 32) 288 Conv1_relu[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_BN (Bat (None, 64, 64, 32) 128 expanded_conv_depthwise[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_relu (R (None, 64, 64, 32) 0 expanded_conv_depthwise_BN[0][0]
__________________________________________________________________________________________________
expanded_conv_project (Conv2D) (None, 64, 64, 16) 512 expanded_conv_depthwise_relu[0][0
__________________________________________________________________________________________________
expanded_conv_project_BN (Batch (None, 64, 64, 16) 64 expanded_conv_project[0][0]
__________________________________________________________________________________________________
block_1_expand (Conv2D) (None, 64, 64, 96) 1536 expanded_conv_project_BN[0][0]
__________________________________________________________________________________________________
block_1_expand_BN (BatchNormali (None, 64, 64, 96) 384 block_1_expand[0][0]
__________________________________________________________________________________________________
block_1_expand_relu (ReLU) (None, 64, 64, 96) 0 block_1_expand_BN[0][0]
__________________________________________________________________________________________________
block_1_pad (ZeroPadding2D) (None, 65, 65, 96) 0 block_1_expand_relu[0][0]
__________________________________________________________________________________________________
block_1_depthwise (DepthwiseCon (None, 32, 32, 96) 864 block_1_pad[0][0]
__________________________________________________________________________________________________
block_1_depthwise_BN (BatchNorm (None, 32, 32, 96) 384 block_1_depthwise[0][0]
__________________________________________________________________________________________________
block_1_depthwise_relu (ReLU) (None, 32, 32, 96) 0 block_1_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_1_project (Conv2D) (None, 32, 32, 24) 2304 block_1_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_1_project_BN (BatchNormal (None, 32, 32, 24) 96 block_1_project[0][0]
__________________________________________________________________________________________________
block_2_expand (Conv2D) (None, 32, 32, 144) 3456 block_1_project_BN[0][0]
__________________________________________________________________________________________________
block_2_expand_BN (BatchNormali (None, 32, 32, 144) 576 block_2_expand[0][0]
__________________________________________________________________________________________________
block_2_expand_relu (ReLU) (None, 32, 32, 144) 0 block_2_expand_BN[0][0]
__________________________________________________________________________________________________
block_2_depthwise (DepthwiseCon (None, 32, 32, 144) 1296 block_2_expand_relu[0][0]
__________________________________________________________________________________________________
block_2_depthwise_BN (BatchNorm (None, 32, 32, 144) 576 block_2_depthwise[0][0]
__________________________________________________________________________________________________
block_2_depthwise_relu (ReLU) (None, 32, 32, 144) 0 block_2_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_2_project (Conv2D) (None, 32, 32, 24) 3456 block_2_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_2_project_BN (BatchNormal (None, 32, 32, 24) 96 block_2_project[0][0]
__________________________________________________________________________________________________
block_2_add (Add) (None, 32, 32, 24) 0 block_1_project_BN[0][0]
block_2_project_BN[0][0]
__________________________________________________________________________________________________
block_3_expand (Conv2D) (None, 32, 32, 144) 3456 block_2_add[0][0]
__________________________________________________________________________________________________
block_3_expand_BN (BatchNormali (None, 32, 32, 144) 576 block_3_expand[0][0]
__________________________________________________________________________________________________
block_3_expand_relu (ReLU) (None, 32, 32, 144) 0 block_3_expand_BN[0][0]
__________________________________________________________________________________________________
block_3_pad (ZeroPadding2D) (None, 33, 33, 144) 0 block_3_expand_relu[0][0]
__________________________________________________________________________________________________
block_3_depthwise (DepthwiseCon (None, 16, 16, 144) 1296 block_3_pad[0][0]
__________________________________________________________________________________________________
block_3_depthwise_BN (BatchNorm (None, 16, 16, 144) 576 block_3_depthwise[0][0]
__________________________________________________________________________________________________
block_3_depthwise_relu (ReLU) (None, 16, 16, 144) 0 block_3_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_3_project (Conv2D) (None, 16, 16, 32) 4608 block_3_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_3_project_BN (BatchNormal (None, 16, 16, 32) 128 block_3_project[0][0]
__________________________________________________________________________________________________
block_4_expand (Conv2D) (None, 16, 16, 192) 6144 block_3_project_BN[0][0]
__________________________________________________________________________________________________
block_4_expand_BN (BatchNormali (None, 16, 16, 192) 768 block_4_expand[0][0]
__________________________________________________________________________________________________
block_4_expand_relu (ReLU) (None, 16, 16, 192) 0 block_4_expand_BN[0][0]
__________________________________________________________________________________________________
block_4_depthwise (DepthwiseCon (None, 16, 16, 192) 1728 block_4_expand_relu[0][0]
__________________________________________________________________________________________________
block_4_depthwise_BN (BatchNorm (None, 16, 16, 192) 768 block_4_depthwise[0][0]
__________________________________________________________________________________________________
block_4_depthwise_relu (ReLU) (None, 16, 16, 192) 0 block_4_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_4_project (Conv2D) (None, 16, 16, 32) 6144 block_4_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_4_project_BN (BatchNormal (None, 16, 16, 32) 128 block_4_project[0][0]
__________________________________________________________________________________________________
block_4_add (Add) (None, 16, 16, 32) 0 block_3_project_BN[0][0]
block_4_project_BN[0][0]
__________________________________________________________________________________________________
block_5_expand (Conv2D) (None, 16, 16, 192) 6144 block_4_add[0][0]
__________________________________________________________________________________________________
block_5_expand_BN (BatchNormali (None, 16, 16, 192) 768 block_5_expand[0][0]
__________________________________________________________________________________________________
block_5_expand_relu (ReLU) (None, 16, 16, 192) 0 block_5_expand_BN[0][0]
__________________________________________________________________________________________________
block_5_depthwise (DepthwiseCon (None, 16, 16, 192) 1728 block_5_expand_relu[0][0]
__________________________________________________________________________________________________
block_5_depthwise_BN (BatchNorm (None, 16, 16, 192) 768 block_5_depthwise[0][0]
__________________________________________________________________________________________________
block_5_depthwise_relu (ReLU) (None, 16, 16, 192) 0 block_5_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_5_project (Conv2D) (None, 16, 16, 32) 6144 block_5_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_5_project_BN (BatchNormal (None, 16, 16, 32) 128 block_5_project[0][0]
__________________________________________________________________________________________________
block_5_add (Add) (None, 16, 16, 32) 0 block_4_add[0][0]
block_5_project_BN[0][0]
__________________________________________________________________________________________________
block_6_expand (Conv2D) (None, 16, 16, 192) 6144 block_5_add[0][0]
__________________________________________________________________________________________________
block_6_expand_BN (BatchNormali (None, 16, 16, 192) 768 block_6_expand[0][0]
__________________________________________________________________________________________________
block_6_expand_relu (ReLU) (None, 16, 16, 192) 0 block_6_expand_BN[0][0]
__________________________________________________________________________________________________
block_6_pad (ZeroPadding2D) (None, 17, 17, 192) 0 block_6_expand_relu[0][0]
__________________________________________________________________________________________________
block_6_depthwise (DepthwiseCon (None, 8, 8, 192) 1728 block_6_pad[0][0]
__________________________________________________________________________________________________
block_6_depthwise_BN (BatchNorm (None, 8, 8, 192) 768 block_6_depthwise[0][0]
__________________________________________________________________________________________________
block_6_depthwise_relu (ReLU) (None, 8, 8, 192) 0 block_6_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_6_project (Conv2D) (None, 8, 8, 64) 12288 block_6_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_6_project_BN (BatchNormal (None, 8, 8, 64) 256 block_6_project[0][0]
__________________________________________________________________________________________________
block_7_expand (Conv2D) (None, 8, 8, 384) 24576 block_6_project_BN[0][0]
__________________________________________________________________________________________________
block_7_expand_BN (BatchNormali (None, 8, 8, 384) 1536 block_7_expand[0][0]
__________________________________________________________________________________________________
block_7_expand_relu (ReLU) (None, 8, 8, 384) 0 block_7_expand_BN[0][0]
__________________________________________________________________________________________________
block_7_depthwise (DepthwiseCon (None, 8, 8, 384) 3456 block_7_expand_relu[0][0]
__________________________________________________________________________________________________
block_7_depthwise_BN (BatchNorm (None, 8, 8, 384) 1536 block_7_depthwise[0][0]
__________________________________________________________________________________________________
block_7_depthwise_relu (ReLU) (None, 8, 8, 384) 0 block_7_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_7_project (Conv2D) (None, 8, 8, 64) 24576 block_7_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_7_project_BN (BatchNormal (None, 8, 8, 64) 256 block_7_project[0][0]
__________________________________________________________________________________________________
block_7_add (Add) (None, 8, 8, 64) 0 block_6_project_BN[0][0]
block_7_project_BN[0][0]
__________________________________________________________________________________________________
block_8_expand (Conv2D) (None, 8, 8, 384) 24576 block_7_add[0][0]
__________________________________________________________________________________________________
block_8_expand_BN (BatchNormali (None, 8, 8, 384) 1536 block_8_expand[0][0]
__________________________________________________________________________________________________
block_8_expand_relu (ReLU) (None, 8, 8, 384) 0 block_8_expand_BN[0][0]
__________________________________________________________________________________________________
block_8_depthwise (DepthwiseCon (None, 8, 8, 384) 3456 block_8_expand_relu[0][0]
__________________________________________________________________________________________________
block_8_depthwise_BN (BatchNorm (None, 8, 8, 384) 1536 block_8_depthwise[0][0]
__________________________________________________________________________________________________
block_8_depthwise_relu (ReLU) (None, 8, 8, 384) 0 block_8_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_8_project (Conv2D) (None, 8, 8, 64) 24576 block_8_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_8_project_BN (BatchNormal (None, 8, 8, 64) 256 block_8_project[0][0]
__________________________________________________________________________________________________
block_8_add (Add) (None, 8, 8, 64) 0 block_7_add[0][0]
block_8_project_BN[0][0]
__________________________________________________________________________________________________
block_9_expand (Conv2D) (None, 8, 8, 384) 24576 block_8_add[0][0]
__________________________________________________________________________________________________
block_9_expand_BN (BatchNormali (None, 8, 8, 384) 1536 block_9_expand[0][0]
__________________________________________________________________________________________________
block_9_expand_relu (ReLU) (None, 8, 8, 384) 0 block_9_expand_BN[0][0]
__________________________________________________________________________________________________
block_9_depthwise (DepthwiseCon (None, 8, 8, 384) 3456 block_9_expand_relu[0][0]
__________________________________________________________________________________________________
block_9_depthwise_BN (BatchNorm (None, 8, 8, 384) 1536 block_9_depthwise[0][0]
__________________________________________________________________________________________________
block_9_depthwise_relu (ReLU) (None, 8, 8, 384) 0 block_9_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_9_project (Conv2D) (None, 8, 8, 64) 24576 block_9_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_9_project_BN (BatchNormal (None, 8, 8, 64) 256 block_9_project[0][0]
__________________________________________________________________________________________________
block_9_add (Add) (None, 8, 8, 64) 0 block_8_add[0][0]
block_9_project_BN[0][0]
__________________________________________________________________________________________________
block_10_expand (Conv2D) (None, 8, 8, 384) 24576 block_9_add[0][0]
__________________________________________________________________________________________________
block_10_expand_BN (BatchNormal (None, 8, 8, 384) 1536 block_10_expand[0][0]
__________________________________________________________________________________________________
block_10_expand_relu (ReLU) (None, 8, 8, 384) 0 block_10_expand_BN[0][0]
__________________________________________________________________________________________________
block_10_depthwise (DepthwiseCo (None, 8, 8, 384) 3456 block_10_expand_relu[0][0]
__________________________________________________________________________________________________
block_10_depthwise_BN (BatchNor (None, 8, 8, 384) 1536 block_10_depthwise[0][0]
__________________________________________________________________________________________________
block_10_depthwise_relu (ReLU) (None, 8, 8, 384) 0 block_10_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_10_project (Conv2D) (None, 8, 8, 96) 36864 block_10_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_10_project_BN (BatchNorma (None, 8, 8, 96) 384 block_10_project[0][0]
__________________________________________________________________________________________________
block_11_expand (Conv2D) (None, 8, 8, 576) 55296 block_10_project_BN[0][0]
__________________________________________________________________________________________________
block_11_expand_BN (BatchNormal (None, 8, 8, 576) 2304 block_11_expand[0][0]
__________________________________________________________________________________________________
block_11_expand_relu (ReLU) (None, 8, 8, 576) 0 block_11_expand_BN[0][0]
__________________________________________________________________________________________________
block_11_depthwise (DepthwiseCo (None, 8, 8, 576) 5184 block_11_expand_relu[0][0]
__________________________________________________________________________________________________
block_11_depthwise_BN (BatchNor (None, 8, 8, 576) 2304 block_11_depthwise[0][0]
__________________________________________________________________________________________________
block_11_depthwise_relu (ReLU) (None, 8, 8, 576) 0 block_11_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_11_project (Conv2D) (None, 8, 8, 96) 55296 block_11_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_11_project_BN (BatchNorma (None, 8, 8, 96) 384 block_11_project[0][0]
__________________________________________________________________________________________________
block_11_add (Add) (None, 8, 8, 96) 0 block_10_project_BN[0][0]
block_11_project_BN[0][0]
__________________________________________________________________________________________________
block_12_expand (Conv2D) (None, 8, 8, 576) 55296 block_11_add[0][0]
__________________________________________________________________________________________________
block_12_expand_BN (BatchNormal (None, 8, 8, 576) 2304 block_12_expand[0][0]
__________________________________________________________________________________________________
block_12_expand_relu (ReLU) (None, 8, 8, 576) 0 block_12_expand_BN[0][0]
__________________________________________________________________________________________________
block_12_depthwise (DepthwiseCo (None, 8, 8, 576) 5184 block_12_expand_relu[0][0]
__________________________________________________________________________________________________
block_12_depthwise_BN (BatchNor (None, 8, 8, 576) 2304 block_12_depthwise[0][0]
__________________________________________________________________________________________________
block_12_depthwise_relu (ReLU) (None, 8, 8, 576) 0 block_12_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_12_project (Conv2D) (None, 8, 8, 96) 55296 block_12_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_12_project_BN (BatchNorma (None, 8, 8, 96) 384 block_12_project[0][0]
__________________________________________________________________________________________________
block_12_add (Add) (None, 8, 8, 96) 0 block_11_add[0][0]
block_12_project_BN[0][0]
__________________________________________________________________________________________________
block_13_expand (Conv2D) (None, 8, 8, 576) 55296 block_12_add[0][0]
__________________________________________________________________________________________________
block_13_expand_BN (BatchNormal (None, 8, 8, 576) 2304 block_13_expand[0][0]
__________________________________________________________________________________________________
block_13_expand_relu (ReLU) (None, 8, 8, 576) 0 block_13_expand_BN[0][0]
__________________________________________________________________________________________________
block_13_pad (ZeroPadding2D) (None, 9, 9, 576) 0 block_13_expand_relu[0][0]
__________________________________________________________________________________________________
block_13_depthwise (DepthwiseCo (None, 4, 4, 576) 5184 block_13_pad[0][0]
__________________________________________________________________________________________________
block_13_depthwise_BN (BatchNor (None, 4, 4, 576) 2304 block_13_depthwise[0][0]
__________________________________________________________________________________________________
block_13_depthwise_relu (ReLU) (None, 4, 4, 576) 0 block_13_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_13_project (Conv2D) (None, 4, 4, 160) 92160 block_13_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_13_project_BN (BatchNorma (None, 4, 4, 160) 640 block_13_project[0][0]
__________________________________________________________________________________________________
block_14_expand (Conv2D) (None, 4, 4, 960) 153600 block_13_project_BN[0][0]
__________________________________________________________________________________________________
block_14_expand_BN (BatchNormal (None, 4, 4, 960) 3840 block_14_expand[0][0]
__________________________________________________________________________________________________
block_14_expand_relu (ReLU) (None, 4, 4, 960) 0 block_14_expand_BN[0][0]
__________________________________________________________________________________________________
block_14_depthwise (DepthwiseCo (None, 4, 4, 960) 8640 block_14_expand_relu[0][0]
__________________________________________________________________________________________________
block_14_depthwise_BN (BatchNor (None, 4, 4, 960) 3840 block_14_depthwise[0][0]
__________________________________________________________________________________________________
block_14_depthwise_relu (ReLU) (None, 4, 4, 960) 0 block_14_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_14_project (Conv2D) (None, 4, 4, 160) 153600 block_14_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_14_project_BN (BatchNorma (None, 4, 4, 160) 640 block_14_project[0][0]
__________________________________________________________________________________________________
block_14_add (Add) (None, 4, 4, 160) 0 block_13_project_BN[0][0]
block_14_project_BN[0][0]
__________________________________________________________________________________________________
block_15_expand (Conv2D) (None, 4, 4, 960) 153600 block_14_add[0][0]
__________________________________________________________________________________________________
block_15_expand_BN (BatchNormal (None, 4, 4, 960) 3840 block_15_expand[0][0]
__________________________________________________________________________________________________
block_15_expand_relu (ReLU) (None, 4, 4, 960) 0 block_15_expand_BN[0][0]
__________________________________________________________________________________________________
block_15_depthwise (DepthwiseCo (None, 4, 4, 960) 8640 block_15_expand_relu[0][0]
__________________________________________________________________________________________________
block_15_depthwise_BN (BatchNor (None, 4, 4, 960) 3840 block_15_depthwise[0][0]
__________________________________________________________________________________________________
block_15_depthwise_relu (ReLU) (None, 4, 4, 960) 0 block_15_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_15_project (Conv2D) (None, 4, 4, 160) 153600 block_15_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_15_project_BN (BatchNorma (None, 4, 4, 160) 640 block_15_project[0][0]
__________________________________________________________________________________________________
block_15_add (Add) (None, 4, 4, 160) 0 block_14_add[0][0]
block_15_project_BN[0][0]
__________________________________________________________________________________________________
block_16_expand (Conv2D) (None, 4, 4, 960) 153600 block_15_add[0][0]
__________________________________________________________________________________________________
block_16_expand_BN (BatchNormal (None, 4, 4, 960) 3840 block_16_expand[0][0]
__________________________________________________________________________________________________
block_16_expand_relu (ReLU) (None, 4, 4, 960) 0 block_16_expand_BN[0][0]
__________________________________________________________________________________________________
block_16_depthwise (DepthwiseCo (None, 4, 4, 960) 8640 block_16_expand_relu[0][0]
__________________________________________________________________________________________________
block_16_depthwise_BN (BatchNor (None, 4, 4, 960) 3840 block_16_depthwise[0][0]
__________________________________________________________________________________________________
block_16_depthwise_relu (ReLU) (None, 4, 4, 960) 0 block_16_depthwise_BN[0][0]
__________________________________________________________________________________________________
block_16_project (Conv2D) (None, 4, 4, 320) 307200 block_16_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_16_project_BN (BatchNorma (None, 4, 4, 320) 1280 block_16_project[0][0]
__________________________________________________________________________________________________
Conv_1 (Conv2D) (None, 4, 4, 1280) 409600 block_16_project_BN[0][0]
__________________________________________________________________________________________________
Conv_1_bn (BatchNormalization) (None, 4, 4, 1280) 5120 Conv_1[0][0]
__________________________________________________________________________________________________
out_relu (ReLU) (None, 4, 4, 1280) 0 Conv_1_bn[0][0]
==================================================================================================
Total params: 2,257,984
Trainable params: 2,223,872
Non-trainable params: 34,112
__________________________________________________________________________________________________
from tensorflow.keras.utils import plot_model
plot_model(backbone)
len(backbone.layers)
# 154
layer_names = [
'block_1_expand_relu', # 64x64
'block_3_expand_relu', # 32x32
'block_6_expand_relu', # 16x16
'block_13_expand_relu', # 8x8
'block_16_project', # 4x4
]
base_model_outputs = [base_model.get_layer(name).output for name in layer_names]
'Computer_Science > Visual Intelligence' 카테고리의 다른 글
39일차 - 논문 수업 (GAN) (0) | 2021.11.16 |
---|---|
38일차 - Style Transfer (0) | 2021.11.16 |
36일차 - 논문 수업 (Segmentation) (0) | 2021.11.16 |
35일차 - 논문 수업 (Segmentation) (0) | 2021.11.01 |
34일차 - 논문 수업 (VAE) (0) | 2021.11.01 |