728x90
반응형
pretrained된 last checkpoint 모델의 weight를 다시 load_weight() 적용시 런타임 재시작을 적용해야 함.
- 이를 위해 앞의 로직을 아래 셀에서 모두 일괄 정리함
import os
import sys
import tensorflow.compat.v1 as tf
import numpy as np
sys.path.append('/content/automl/efficientdet')
import hparams_config
from tf2 import anchors # keras를 tf2 로 변경
from model_inspect import ModelInspector
class INFER_CFG:
model_name = 'efficientdet-d0' # efficientdet 모델명
model_dir = '/content/efficientdet-d0' # pretrained checkpoint 파일이 있는 디렉토리
hparams = '' # csv 형식의 k=v 쌍 또는 yaml file
config = hparams_config.get_efficientdet_config(INFER_CFG.model_name)
config.is_training_bn = False
# config의 image_size를 원본 이미지 사이즈로 재 조정. config의 image_size에 가로x세로 형식으로 문자열 입력
config.image_size = '1920x1280'
config.nms_configs.score_thresh = 0.4
config.nms_configs.max_output_size = 100
config.override(INFER_CFG.hparams)
import inference
from tf2 import efficientdet_keras # keras를 tf2로 변경
model = efficientdet_keras.EfficientDetModel(config=config)
model.build((None, None, None, 3))
print('#### checkpoint name:', tf.train.latest_checkpoint(INFER_CFG.model_dir))
# pretrained된 last checkpoint 모델의 weight를 다시 load_weight() 적용시 런타임 재시작을 적용해야 함.
model.load_weights(tf.train.latest_checkpoint(INFER_CFG.model_dir))
model.summary()
class ExportModel(tf.Module):
def __init__(self, model):
super().__init__()
self.model = model
@tf.function
def f(self, imgs):
return self.model(imgs, training=False, post_mode='global')
export_model = ExportModel(model)
WARNING:tensorflow:Using a while_loop for converting ResizeBilinear
WARNING:tensorflow:Using a while_loop for converting ResizeBilinear
/content/automl/efficientdet/utils.py:23: UserWarning: `layer.updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
from tensorflow.python.tpu import tpu_function # pylint:disable=g-direct-tensorflow-import
/content/automl/efficientdet/utils.py:255: UserWarning: `layer.updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
for u in self.updates:
WARNING:tensorflow:Using a while_loop for converting NonMaxSuppressionV5
WARNING:tensorflow:Using a while_loop for converting NonMaxSuppressionV5
#### checkpoint name: /content/efficientdet-d0/model
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/tracking/util.py:1345: NameBasedSaverStatus.__init__ (from tensorflow.python.training.tracking.util) is deprecated and will be removed in a future version.
Instructions for updating:
Restoring a name-based tf.train.Saver checkpoint using the object-based restore API. This mode uses global names to match variables, and so is somewhat fragile. It also adds new restore ops to the graph each time it is called when graph building. Prefer re-encoding training checkpoints in the object-based format: run save() on the object-based saver (the same one this message is coming from) and use that checkpoint in the future.
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/tracking/util.py:1345: NameBasedSaverStatus.__init__ (from tensorflow.python.training.tracking.util) is deprecated and will be removed in a future version.
Instructions for updating:
Restoring a name-based tf.train.Saver checkpoint using the object-based restore API. This mode uses global names to match variables, and so is somewhat fragile. It also adds new restore ops to the graph each time it is called when graph building. Prefer re-encoding training checkpoints in the object-based format: run save() on the object-based saver (the same one this message is coming from) and use that checkpoint in the future.
Model: ""
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
efficientnet-b0 (Model) multiple 3634844
resample_p6 (ResampleFeatur multiple 20800
eMap)
resample_p7 (ResampleFeatur multiple 0
eMap)
fpn_cells (FPNCells) multiple 179321
class_net (ClassNet) multiple 71274
box_net (BoxNet) multiple 20964
=================================================================
Total params: 3,927,203
Trainable params: 3,880,067
Non-trainable params: 47,136
_________________________________________________________________
# p100에서 image 1920x1280일 경우 74ms, image 512x512일 경우 27ms, v100에서 image 512x512일 경우 24ms
import time
import cv2
img = cv2.cvtColor(cv2.imread('/content/data/img01.png'), cv2.COLOR_BGR2RGB)
imgs= img[np.newaxis, ...]
start_time = time.time()
boxes, scores, classes, valid_len = export_model.f(imgs)
print('elapsed time:', time.time() - start_time)
/content/automl/efficientdet/utils.py:23: UserWarning: `layer.updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
from tensorflow.python.tpu import tpu_function # pylint:disable=g-direct-tensorflow-import
/content/automl/efficientdet/utils.py:255: UserWarning: `layer.updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
for u in self.updates:
elapsed time: 9.74593186378479
labels_to_names = {1:'person',2:'bicycle',3:'car',4:'motorcycle',5:'airplane',6:'bus',7:'train',8:'truck',9:'boat',10:'traffic light',
11:'fire hydrant',12:'street sign',13:'stop sign',14:'parking meter',15:'bench',16:'bird',17:'cat',18:'dog',19:'horse',20:'sheep',
21:'cow',22:'elephant',23:'bear',24:'zebra',25:'giraffe',26:'hat',27:'backpack',28:'umbrella',29:'shoe',30:'eye glasses',
31:'handbag',32:'tie',33:'suitcase',34:'frisbee',35:'skis',36:'snowboard',37:'sports ball',38:'kite',39:'baseball bat',40:'baseball glove',
41:'skateboard',42:'surfboard',43:'tennis racket',44:'bottle',45:'plate',46:'wine glass',47:'cup',48:'fork',49:'knife',50:'spoon',
51:'bowl',52:'banana',53:'apple',54:'sandwich',55:'orange',56:'broccoli',57:'carrot',58:'hot dog',59:'pizza',60:'donut',
61:'cake',62:'chair',63:'couch',64:'potted plant',65:'bed',66:'mirror',67:'dining table',68:'window',69:'desk',70:'toilet',
71:'door',72:'tv',73:'laptop',74:'mouse',75:'remote',76:'keyboard',77:'cell phone',78:'microwave',79:'oven',80:'toaster',
81:'sink',82:'refrigerator',83:'blender',84:'book',85:'clock',86:'vase',87:'scissors',88:'teddy bear',89:'hair drier',90:'toothbrush',
91:'hair brush'}
def get_detected_img(export_model, img_array, is_print=True):
# automl efficent은 반환 bbox 좌표값이 원본 이미지 좌표값으로 되어 있으므로 별도의 scaling작업 필요 없음.
'''
height = img_array.shape[0]
width = img_array.shape[1]
'''
# cv2의 rectangle()은 인자로 들어온 이미지 배열에 직접 사각형을 업데이트 하므로 그림 표현을 위한 별도의 이미지 배열 생성.
draw_img = img_array.copy()
# bounding box의 테두리와 caption 글자색 지정
green_color=(0, 255, 0)
red_color=(0, 0, 255)
# cv2로 만들어진 numpy image array를 tensor로 변환
img_tensor = tf.convert_to_tensor(img_array, dtype=tf.uint8)[tf.newaxis, ...]
#img_tensor = tf.convert_to_tensor(img_array, dtype=tf.float32)[tf.newaxis, ...]
# efficientdet 모델을 다운로드 한 뒤 inference 수행.
start_time = time.time()
# automl efficientdet 모델은 boxes, score, classes, num_detections를 각각 Tensor로 반환.
boxes, scores, classes, valid_len = export_model.f(img_tensor)
# Tensor값을 시각화를 위해 numpy 로 변환.
boxes = boxes.numpy()
scores = scores.numpy()
classes = classes.numpy()
valid_len = valid_len.numpy()
# detected 된 object들을 iteration 하면서 정보 추출. detect된 object의 갯수는 100개
for i in range(valid_len[0]):
# detection score를 iteration시 마다 높은 순으로 추출하고 SCORE_THRESHOLD보다 낮으면 loop 중단.
score = scores[0, i]
# detected된 object들은 scale된 기준으로 예측되었으므로 다시 원본 이미지 비율로 계산
box = boxes[0, i]
''' **** 주의 ******
box는 ymin, xmin, ymax, xmax 순서로 되어 있음. 또한 원본 좌표값으로 되어 있음. '''
left = box[1]
top = box[0]
right = box[3]
bottom = box[2]
# class id 추출하고 class 명으로 매핑
class_id = classes[0, i]
caption = "{}: {:.4f}".format(labels_to_names[class_id], score)
print(caption)
#cv2.rectangle()은 인자로 들어온 draw_img에 사각형을 그림. 위치 인자는 반드시 정수형.
cv2.rectangle(draw_img, (int(left), int(top)), (int(right), int(bottom)), color=green_color, thickness=2)
cv2.putText(draw_img, caption, (int(left), int(top - 5)), cv2.FONT_HERSHEY_SIMPLEX, 0.4, red_color, 1)
if is_print:
print('Detection 수행시간:',round(time.time() - start_time, 2),"초")
return draw_img
!wget -O ./data/beatles01.jpg https://raw.githubusercontent.com/chulminkw/DLCV/master/data/image/beatles01.jpg
!wget -O ./data/baseball01.jpg https://raw.githubusercontent.com/chulminkw/DLCV/master/data/image/baseball01.jpg
import cv2
import matplotlib.pyplot as plt
img_array = cv2.cvtColor(cv2.imread('/content/data/img01.png'), cv2.COLOR_BGR2RGB)
draw_img = get_detected_img(export_model, img_array, is_print=True)
plt.figure(figsize=(16, 16))
plt.imshow(draw_img)
import cv2
import matplotlib.pyplot as plt
img_array = cv2.cvtColor(cv2.imread('/content/data/beatles01.jpg'), cv2.COLOR_BGR2RGB)
draw_img = get_detected_img(export_model, img_array, is_print=True)
plt.figure(figsize=(16, 16))
plt.imshow(draw_img)
person: 0.9743
person: 0.9432
person: 0.9181
person: 0.8508
car: 0.7775
car: 0.7682
car: 0.7188
person: 0.7122
car: 0.7111
car: 0.6500
car: 0.6117
car: 0.5698
car: 0.5567
car: 0.5252
Detection 수행시간: 5.42 초
반응형
'Computer_Science > RetinaNet' 카테고리의 다른 글
12-2~5. autoML EfficientDet pascal voc train (0) | 2021.12.08 |
---|---|
12-1. autoML efficientDet custom 데이터 train (0) | 2021.12.08 |
11-6~8. automl efficientDet (0) | 2021.11.30 |
11-4. tensorflow hub의 efficientDet lite 모델을 이용한 inference 실습 (0) | 2021.11.30 |
11-2~3. tensorflow hub의 efficientDet 모델을 이용한 inference 실습 (0) | 2021.11.30 |