728x90
반응형
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy import stats
from sklearn.datasets import load_boston
%matplotlib inline

# boston 데이타셋 로드
boston = load_boston()

# boston 데이타셋 DataFrame 변환 
bostonDF = pd.DataFrame(boston.data , columns = boston.feature_names)

# boston dataset의 target array는 주택 가격임. 이를 PRICE 컬럼으로 DataFrame에 추가함. 
bostonDF['PRICE'] = boston.target
print('Boston 데이타셋 크기 :',bostonDF.shape)
bostonDF.head()

# Boston 데이타셋 크기 : (506, 14)
CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
  • CRIM: 지역별 범죄 발생률
  • ZN: 25,000평방피트를 초과하는 거주 지역의 비율
  • NDUS: 비상업 지역 넓이 비율
  • CHAS: 찰스강에 대한 더미 변수(강의 경계에 위치한 경우는 1, 아니면 0)
  • NOX: 일산화질소 농도
  • RM: 거주할 수 있는 방 개수
  • AGE: 1940년 이전에 건축된 소유 주택의 비율
  • DIS: 5개 주요 고용센터까지의 가중 거리
  • RAD: 고속도로 접근 용이도
  • TAX: 10,000달러당 재산세율
  • PTRATIO: 지역의 교사와 학생 수 비율
  • B: 지역의 흑인 거주 비율
  • LSTAT: 하위 계층의 비율
  • MEDV: 본인 소유의 주택 가격(중앙값)

 

  • 각 컬럼별로 주택가격에 미치는 영향도를 조사
# 2개의 행과 4개의 열을 가진 subplots를 이용. axs는 4x2개의 ax를 가짐.
fig, axs = plt.subplots(figsize=(16,8) , ncols=4 , nrows=2)
lm_features = ['RM','ZN','INDUS','NOX','AGE','PTRATIO','LSTAT','RAD']
for i , feature in enumerate(lm_features):
    row = int(i/4)
    col = i%4
    # 시본의 regplot을 이용해 산점도와 선형 회귀 직선을 함께 표현
    sns.regplot(x=feature , y='PRICE',data=bostonDF , ax=axs[row][col])

 

학습과 테스트 데이터 세트로 분리하고 학습/예측/평가 수행

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error , r2_score

y_target = bostonDF['PRICE']
X_data = bostonDF.drop(['PRICE'],axis=1,inplace=False)

X_train , X_test , y_train , y_test = train_test_split(X_data , y_target ,test_size=0.3, random_state=156)

# Linear Regression OLS로 학습/예측/평가 수행. 
lr = LinearRegression()
lr.fit(X_train ,y_train )
y_preds = lr.predict(X_test)
mse = mean_squared_error(y_test, y_preds)
rmse = np.sqrt(mse)

print('MSE : {0:.3f} , RMSE : {1:.3F}'.format(mse , rmse))
print('Variance score : {0:.3f}'.format(r2_score(y_test, y_preds)))

# MSE : 17.297 , RMSE : 4.159
# Variance score : 0.757

 

print('절편 값:',lr.intercept_)
print('회귀 계수값:', np.round(lr.coef_, 1))

# 절편 값: 40.995595172164315
# 회귀 계수값: [ -0.1   0.1   0.    3.  -19.8   3.4   0.   -1.7   0.4  -0.   -0.9   0.   -0.6]

 

# 회귀 계수를 큰 값 순으로 정렬하기 위해 Series로 생성. index가 컬럼명에 유의
coeff = pd.Series(data=np.round(lr.coef_, 1), index=X_data.columns )
coeff.sort_values(ascending=False)

RM          3.4
CHAS        3.0
RAD         0.4
ZN          0.1
B           0.0
TAX        -0.0
AGE         0.0
INDUS       0.0
CRIM       -0.1
LSTAT      -0.6
PTRATIO    -0.9
DIS        -1.7
NOX       -19.8
dtype: float64

 

from sklearn.model_selection import cross_val_score

y_target = bostonDF['PRICE']
X_data = bostonDF.drop(['PRICE'],axis=1,inplace=False)
lr = LinearRegression()

# cross_val_score( )로 5 Fold 셋으로 MSE 를 구한 뒤 이를 기반으로 다시  RMSE 구함. // 회귀는 오차 값이 작을수록 좋은 것
neg_mse_scores = cross_val_score(lr, X_data, y_target, scoring="neg_mean_squared_error", cv = 5)
rmse_scores  = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)

# cross_val_score(scoring="neg_mean_squared_error")로 반환된 값은 모두 음수 
print(' 5 folds 의 개별 Negative MSE scores: ', np.round(neg_mse_scores, 2))
print(' 5 folds 의 개별 RMSE scores : ', np.round(rmse_scores, 2))
print(' 5 folds 의 평균 RMSE : {0:.3f} '.format(avg_rmse))


#  5 folds 의 개별 Negative MSE scores:  [-12.46 -26.05 -33.07 -80.76 -33.31]
#  5 folds 의 개별 RMSE scores :  [3.53 5.1  5.75 8.99 5.77]
#  5 folds 의 평균 RMSE : 5.829

 

반응형

+ Recent posts