728x90
반응형

Polynomial Regression 이해

PolynomialFeatures 클래스로 다항식 변환 사이킷런은 다항피처를 지원하지 않아서 단항으로 [단항, 단항...]**n 구성후 liear로 학습

from sklearn.preprocessing import PolynomialFeatures
import numpy as np

# 다항식으로 변환한 단항식 생성, [[0,1],[2,3]]의 2X2 행렬 생성
X = np.arange(4).reshape(2,2)
print('일차 단항식 계수 feature:\n',X )

# degree = 2 인 2차 다항식으로 변환하기 위해 PolynomialFeatures를 이용하여 변환
poly = PolynomialFeatures(degree=2)
poly.fit(X)
poly_ftr = poly.transform(X)
print('변환된 2차 다항식 계수 feature:\n', poly_ftr)


일차 단항식 계수 feature:
 [[0 1]
 [2 3]]
변환된 2차 다항식 계수 feature:
 [[1. 0. 1. 0. 0. 1.]
 [1. 2. 3. 4. 6. 9.]]

 

3차 다항식 결정값을 구하는 함수 polynomial_func(X) 생성. 즉 회귀식은 결정값 y = 1+ 2x_1 + 3x_1^2 + 4x_2^3

def polynomial_func(X):
    y = 1 + 2*X[:,0] + 3*X[:,0]**2 + 4*X[:,1]**3 
    return y

X = np.arange(0,4).reshape(2,2)

print('일차 단항식 계수 feature: \n' ,X)
y = polynomial_func(X)
print('삼차 다항식 결정값: \n', y)

# 3 차 다항식 변환 
poly_ftr = PolynomialFeatures(degree=3).fit_transform(X)
print('3차 다항식 계수 feature: \n',poly_ftr)

# Linear Regression에 3차 다항식 계수 feature와 3차 다항식 결정값으로 학습 후 회귀 계수 확인
model = LinearRegression()
model.fit(poly_ftr,y)
print('Polynomial 회귀 계수\n' , np.round(model.coef_, 2))
print('Polynomial 회귀 Shape :', model.coef_.shape)


일차 단항식 계수 feature: 
 [[0 1]
 [2 3]]
삼차 다항식 결정값: 
 [  5 125]
3차 다항식 계수 feature: 
 [[ 1.  0.  1.  0.  0.  1.  0.  0.  0.  1.]
 [ 1.  2.  3.  4.  6.  9.  8. 12. 18. 27.]]
Polynomial 회귀 계수
 [0.   0.18 0.18 0.36 0.54 0.72 0.72 1.08 1.62 2.34]
Polynomial 회귀 Shape : (10,)

 

3차 다항식 계수의 피처값과 3차 다항식 결정값으로 학습

** 사이킷런 파이프라인(Pipeline)을 이용하여 3차 다항회귀 학습 **

사이킷런의 Pipeline 객체는 Feature 엔지니어링 변환과 모델 학습/예측을 순차적으로 결합해줍니다.

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
import numpy as np

def polynomial_func(X):
    y = 1 + 2*X[:,0] + 3*X[:,0]**2 + 4*X[:,1]**3 
    return y

# Pipeline 객체로 Streamline 하게 Polynomial Feature변환과 Linear Regression을 연결
model = Pipeline([('poly', PolynomialFeatures(degree=3)),
                  ('linear', LinearRegression())])
X = np.arange(4).reshape(2,2)
y = polynomial_func(X)

model = model.fit(X, y)
print('Polynomial 회귀 계수\n', np.round(model.named_steps['linear'].coef_, 2))


# Polynomial 회귀 계수
#  [0.   0.18 0.18 0.36 0.54 0.72 0.72 1.08 1.62 2.34]

 

다항 회귀를 이용한 보스턴 주택가격 예측

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error , r2_score
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
import numpy as np

# boston 데이타셋 로드
boston = load_boston()

# boston 데이타셋 DataFrame 변환 
bostonDF = pd.DataFrame(boston.data , columns = boston.feature_names)

# boston dataset의 target array는 주택 가격임. 이를 PRICE 컬럼으로 DataFrame에 추가함. 
bostonDF['PRICE'] = boston.target
print('Boston 데이타셋 크기 :',bostonDF.shape)

y_target = bostonDF['PRICE']
X_data = bostonDF.drop(['PRICE'],axis=1,inplace=False)


X_train , X_test , y_train , y_test = train_test_split(X_data , y_target ,test_size=0.3, random_state=156)

## Pipeline을 이용하여 PolynomialFeatures 변환과 LinearRegression 적용을 순차적으로 결합. 
p_model = Pipeline([('poly', PolynomialFeatures(degree=3, include_bias=False)),
                  ('linear', LinearRegression())])

# 다항회귀는 오버피팅일어나기가 쉬움 degree 조절이 중요degree 조절이 중요 학습데이터에 충실하다보면 괴기한 모습

p_model.fit(X_train, y_train)
y_preds = p_model.predict(X_test)
mse = mean_squared_error(y_test, y_preds)
rmse = np.sqrt(mse)


print('MSE : {0:.3f} , RMSE : {1:.3F}'.format(mse , rmse))
print('Variance score : {0:.3f}'.format(r2_score(y_test, y_preds)))



# Boston 데이타셋 크기 : (506, 14)
# MSE : 79625.594 , RMSE : 282.180
# Variance score : -1116.598

 

X_train_poly= PolynomialFeatures(degree=2, include_bias=False).fit_transform(X_train, y_train)
X_train_poly.shape, X_train.shape

# ((354, 104), (354, 13))

 

Polynomial Regression 을 이용한 Underfitting, Overfitting 이해

cosine 곡선에 약간의 Noise 변동값을 더하여 실제값 곡선을 만듬 **

import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
%matplotlib inline

# random 값으로 구성된 X값에 대해 Cosine 변환값을 반환. 
def true_fun(X):
    return np.cos(1.5 * np.pi * X)

# X는 0 부터 1까지 30개의 random 값을 순서대로 sampling 한 데이타 입니다.  
np.random.seed(0)
n_samples = 30
X = np.sort(np.random.rand(n_samples))

# y 값은 cosine 기반의 true_fun() 에서 약간의 Noise 변동값을 더한 값입니다. 
y = true_fun(X) + np.random.randn(n_samples) * 0.1

 

plt.scatter(X, y)

 

plt.figure(figsize=(14, 5))
degrees = [1, 4, 15]

# 다항 회귀의 차수(degree)를 1, 4, 15로 각각 변화시키면서 비교합니다. 
for i in range(len(degrees)):
    ax = plt.subplot(1, len(degrees), i + 1)
    plt.setp(ax, xticks=(), yticks=())
    
    # 개별 degree별로 Polynomial 변환합니다. 
    polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False)
    linear_regression = LinearRegression()
    pipeline = Pipeline([("polynomial_features", polynomial_features),
                         ("linear_regression", linear_regression)])
    pipeline.fit(X.reshape(-1, 1), y)
    
    # 교차 검증으로 다항 회귀를 평가합니다. 
    scores = cross_val_score(pipeline, X.reshape(-1,1), y,scoring="neg_mean_squared_error", cv=10)
    coefficients = pipeline.named_steps['linear_regression'].coef_
    print('\nDegree {0} 회귀 계수는 {1} 입니다.'.format(degrees[i], np.round(coefficients),2))
    print('Degree {0} MSE 는 {1:.2f} 입니다.'.format(degrees[i] , -1*np.mean(scores)))
    
    # 0 부터 1까지 테스트 데이터 세트를 100개로 나눠 예측을 수행합니다. 
    # 테스트 데이터 세트에 회귀 예측을 수행하고 예측 곡선과 실제 곡선을 그려서 비교합니다.  
    X_test = np.linspace(0, 1, 100)
    # 예측값 곡선
    plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") 
    # 실제 값 곡선
    plt.plot(X_test, true_fun(X_test), '--', label="True function")
    plt.scatter(X, y, edgecolor='b', s=20, label="Samples")
    
    plt.xlabel("x"); plt.ylabel("y"); plt.xlim((0, 1)); plt.ylim((-2, 2)); plt.legend(loc="best")
    plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(degrees[i], -scores.mean(), scores.std()))

plt.show()


Degree 1 회귀 계수는 [-2.] 입니다.
Degree 1 MSE 는 0.41 입니다.

Degree 4 회귀 계수는 [  0. -18.  24.  -7.] 입니다.
Degree 4 MSE 는 0.04 입니다.

Degree 15 회귀 계수는 [-2.98300000e+03  1.03900000e+05 -1.87417000e+06  2.03717200e+07
 -1.44874017e+08  7.09319141e+08 -2.47067172e+09  6.24564702e+09
 -1.15677216e+10  1.56895933e+10 -1.54007040e+10  1.06457993e+10
 -4.91381016e+09  1.35920642e+09 -1.70382078e+08] 입니다.
Degree 15 MSE 는 182581084.83 입니다.

 

편향분산 트레이드 오프 과소적합(편향높고, 분산낮고 : 평균으로 가려함) > 적합wellfit > 과대적합(분산높고, 편향낮음 : 실측 하나하나에 가까워지려함) bias편향성 X variance분산 : 변동성

=> 그래서 규제를 통해 well fit을 찾아 내려함

 

잔차 오류 최소화 : 구체화만 하면 회귀계수가 커짐, 회귀계수가 커지면 오버핏이 기괴해짐 alpha의 역할 => 0이면 infinite이면 규제 : alpha로 페널티 부여해 회귀계수값을 감소시키는 방식 L1 w절대값에 // L2 w제곱에

 

반응형

+ Recent posts