728x90
반응형
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
import pandas as pd
import numpy as np

# 보스턴 데이터 세트 로드
boston = load_boston()
bostonDF = pd.DataFrame(boston.data, columns = boston.feature_names)

bostonDF['PRICE'] = boston.target
y_target = bostonDF['PRICE']
X_data = bostonDF.drop(['PRICE'], axis=1,inplace=False)

rf = RandomForestRegressor(random_state=0, n_estimators=1000)
neg_mse_scores = cross_val_score(rf, X_data, y_target, scoring="neg_mean_squared_error", cv = 5)
rmse_scores  = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)

print(' 5 교차 검증의 개별 Negative MSE scores: ', np.round(neg_mse_scores, 2))
print(' 5 교차 검증의 개별 RMSE scores : ', np.round(rmse_scores, 2))
print(' 5 교차 검증의 평균 RMSE : {0:.3f} '.format(avg_rmse))




5 교차 검증의 개별 Negative MSE scores:  [ -7.88 -13.14 -20.57 -46.23 -18.88]
 5 교차 검증의 개별 RMSE scores :  [2.81 3.63 4.54 6.8  4.34]
 5 교차 검증의 평균 RMSE : 4.423

 

def get_model_cv_prediction(model, X_data, y_target):
    neg_mse_scores = cross_val_score(model, X_data, y_target, scoring="neg_mean_squared_error", cv = 5)
    rmse_scores  = np.sqrt(-1 * neg_mse_scores)
    avg_rmse = np.mean(rmse_scores)
    print('##### ',model.__class__.__name__ , ' #####')
    print(' 5 교차 검증의 평균 RMSE : {0:.3f} '.format(avg_rmse))

 

사이킷런의 여러 회귀 트리 클래스를 이용하여 회귀 예측

from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor

dt_reg = DecisionTreeRegressor(random_state=0, max_depth=4)
rf_reg = RandomForestRegressor(random_state=0, n_estimators=1000)
gb_reg = GradientBoostingRegressor(random_state=0, n_estimators=1000)
xgb_reg = XGBRegressor(n_estimators=1000)
lgb_reg = LGBMRegressor(n_estimators=1000)

# 트리 기반의 회귀 모델을 반복하면서 평가 수행 
models = [dt_reg, rf_reg, gb_reg, xgb_reg, lgb_reg]
for model in models:  
    get_model_cv_prediction(model, X_data, y_target)
    
    
    
    
    
#####  DecisionTreeRegressor  #####
 5 교차 검증의 평균 RMSE : 5.978 
#####  RandomForestRegressor  #####
 5 교차 검증의 평균 RMSE : 4.423 
#####  GradientBoostingRegressor  #####
 5 교차 검증의 평균 RMSE : 4.269 
#####  XGBRegressor  #####
 5 교차 검증의 평균 RMSE : 4.251 
#####  LGBMRegressor  #####
 5 교차 검증의 평균 RMSE : 4.646

 

회귀 트리는 선형 회귀의 회귀 계수 대신, 피처 중요도로 피처의 상대적 중요도를 알 수 있습니다

import seaborn as sns
%matplotlib inline

rf_reg = RandomForestRegressor(n_estimators=1000)

# 앞 예제에서 만들어진 X_data, y_target 데이터 셋을 적용하여 학습합니다.   
rf_reg.fit(X_data, y_target)

feature_series = pd.Series(data=rf_reg.feature_importances_, index=X_data.columns )
feature_series = feature_series.sort_values(ascending=False)
sns.barplot(x= feature_series, y=feature_series.index)

 

오버피팅을 시각화 하기 위해 한개의 피처 RM과 타겟값 PRICE기반으로 회귀 예측 수행

import matplotlib.pyplot as plt
%matplotlib inline

bostonDF_sample = bostonDF[['RM','PRICE']]
bostonDF_sample = bostonDF_sample.sample(n=100,random_state=0)
print(bostonDF_sample.shape)
plt.figure()
plt.scatter(bostonDF_sample.RM , bostonDF_sample.PRICE,c="darkorange")

# (100, 2)

 

import numpy as np
from sklearn.linear_model import LinearRegression

# 선형 회귀와 결정 트리 기반의 Regressor 생성. DecisionTreeRegressor의 max_depth는 각각 2, 7
lr_reg = LinearRegression()
rf_reg2 = DecisionTreeRegressor(max_depth=2)
rf_reg7 = DecisionTreeRegressor(max_depth=7)

# 실제 예측을 적용할 테스트용 데이터 셋을 4.5 ~ 8.5 까지 100개 데이터 셋 생성. 
X_test = np.arange(4.5, 8.5, 0.04).reshape(-1, 1)

# 보스턴 주택가격 데이터에서 시각화를 위해 피처는 RM만, 그리고 결정 데이터인 PRICE 추출
X_feature = bostonDF_sample['RM'].values.reshape(-1,1)
y_target = bostonDF_sample['PRICE'].values.reshape(-1,1)

# 학습과 예측 수행. 
lr_reg.fit(X_feature, y_target)
rf_reg2.fit(X_feature, y_target)
rf_reg7.fit(X_feature, y_target)

pred_lr = lr_reg.predict(X_test)
pred_rf2 = rf_reg2.predict(X_test)
pred_rf7 = rf_reg7.predict(X_test)

 

fig , (ax1, ax2, ax3) = plt.subplots(figsize=(14,4), ncols=3)

# X축값을 4.5 ~ 8.5로 변환하며 입력했을 때, 선형 회귀와 결정 트리 회귀 예측 선 시각화
# 선형 회귀로 학습된 모델 회귀 예측선 
ax1.set_title('Linear Regression')
ax1.scatter(bostonDF_sample.RM, bostonDF_sample.PRICE, c="darkorange")
ax1.plot(X_test, pred_lr,label="linear", linewidth=2 )

# DecisionTreeRegressor의 max_depth를 2로 했을 때 회귀 예측선 
ax2.set_title('Decision Tree Regression: \n max_depth=2')
ax2.scatter(bostonDF_sample.RM, bostonDF_sample.PRICE, c="darkorange")
ax2.plot(X_test, pred_rf2, label="max_depth:3", linewidth=2 )

# DecisionTreeRegressor의 max_depth를 7로 했을 때 회귀 예측선 
ax3.set_title('Decision Tree Regression: \n max_depth=7')
ax3.scatter(bostonDF_sample.RM, bostonDF_sample.PRICE, c="darkorange")
ax3.plot(X_test, pred_rf7, label="max_depth:7", linewidth=2)

반응형

'Data_Science > ML_Perfect_Guide' 카테고리의 다른 글

5-8. House Price  (0) 2021.12.27
5-7. Bike Sharing Demand  (0) 2021.12.27
5-5. Logistics Regression  (0) 2021.12.27
5-4. Regularized Linear Models – Ridge, Lasso  (0) 2021.12.27
5-3. Polynomial Regression, overfitting  (0) 2021.12.27

+ Recent posts